

Short communication

Specific G protein activation and μ -opioid receptor internalization caused by morphine, DAMGO and endomorphin I

Neil T. Burford *, Lara M. Tolbert, Wolfgang Sadee

Department of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0446, USA

Received 29 September 1997; revised 25 November 1997; accepted 28 November 1997

Abstract

Previous studies have shown that the agonist [D-Ala², N-Me-Phe⁴, Gly-ol⁵]enkephalin (DAMGO) but not morphine induces μ -opioid receptor internalization [Arden, J.R., Segredo, V., Wang, Z., Lameh, J., Sadee, W., 1995. J. Neurochem. 65, 1636–1645]. In the present study we investigated the relationship between internalization of the μ -opioid receptor and the specific G proteins activated following treatment with morphine, DAMGO and endomorphin I (Tyr-Pro-Trp-Phe-NH₂) (a putative endogenous μ -opioid receptor agonist) in human embryonic kidney (HEK) cells. Endomorphin I and DAMGO, but not morphine, caused μ -opioid receptor internalization. Morphine, DAMGO and endomorphin I each activated Gi₁ α /Gi₂ α , Go α and Gi₃ α to a similar extent, but not Gq α /G11 α or Gs α in HEK membranes. Therefore, the three ligands tested differed in their ability to internalize μ -opioid receptors even though they were similar in activating individual G proteins. © 1998 Elsevier Science B.V.

Keywords: μ-Opioid receptor; Internalization; Endomorphin I; G protein

1. Introduction

Internalization of G protein-coupled receptors, following agonist exposure, is one mechanism by which G protein-coupled receptors decrease responsiveness to further administration of drugs. Agonist-mediated desensitization and internalization of the β_2 -adrenoceptor has been extensively studied (Lohse et al., 1990; Ferguson et al., 1996; Goodman et al., 1996). However, the mechanism underlying agonist-mediated internalization of other G protein-coupled receptors is less clear. Early mutagenesis studies suggested a correlation between receptor-G protein coupling and internalization (Cheung et al., 1989). However, more recently it has become apparent that internalization of some G protein-coupled receptors can take place without detectable G protein activation (Petrou et al., 1997; Segredo et al., 1997).

The potential role of specific G protein subtypes in agonist-mediated G protein-coupled receptor internalization has not been well characterized. It has become increasingly evident that G protein-coupled receptors can couple to multiple G protein subtypes. Further, measure-

ment of specific effector responses does not necessarily indicate the G protein types activated, as several G proteins can mediate the same second messenger response, via release of their α or $\beta\gamma$ subunits (Yatini et al., 1988; Birnbaumer et al., 1990; Gerhardt and Neubig, 1991; Clapham and Neer, 1997).

The μ -opioid receptor internalizes via clathrin-coated vesicles following exposure to specific agonists such as [D-Ala², N-Me-Phe⁴, Gly-ol⁵]enkephalin (DAMGO) and etorphine. In contrast, morphine does not cause internalization despite the fact that all of these agonists modulate similar second messenger pathways (Arden et al., 1995; Keith et al., 1996; Segredo et al., 1997). The possible existence of multiple receptor conformations induced by different agonists could account for these observations.

Recently, a potent and selective endogenous peptide agonist for the μ -opioid receptor, endomorphin I (Tyr-Pro-Trp-Phe-NH₂), was isolated from bovine brain (Zadina et al., 1997). In the present study, we investigated internalization of the μ -opioid receptor and activation of specific G proteins following treatment with morphine, DAMGO and endomorphin I, in human embryonic kidney (HEK) cells, to test whether these chemically diverse ligands differentially activate specific G proteins and whether these G proteins might play a role in μ -opioid

^{*} Corresponding author. Tel.: (1-415) 476-4006; fax: (1-415) 476-0464; e-mail: ntburf@itsa.ucsf.edu

receptor internalization. The present study shows that endomorphin I and DAMGO, but not morphine, caused internalization of μ -opioid receptors in HEK cells, whereas morphine, DAMGO and endomorphin I activated $\text{Gi}_1 \alpha/\text{Gi}_2 \alpha$, $\text{Go} \alpha$ and $\text{Gi}_3 \alpha$ with a similar efficacy.

2. Materials and methods

2.1. Materials

[35 S]Guanosine 5'-[γ -thio]triphosphate ([35 S]GTP γ S) and the G protein antisera to $\text{Gi}_1\alpha/\text{Gi}_2\alpha$ (AS/7), $\text{Gi}_3\alpha$ (EC/2), $\text{Go}\alpha$ (GC/2), $\text{Gq}\alpha/\text{G11}\alpha$ (QL) and $\text{Gs}\alpha$ (RM/1) were from New England Nuclear (Boston, MA). Protein G Sepharose was from Pharmacia Biotech (Sweden). Normal rabbit serum and Nonidet P-40 were from Calbiochem (La Jolla, CA). Cy3-labelled goat antimouse secondary antibody was from Amersham Corp. (Arlington Heights, IL). All other reagents were from Fisher Scientific (Fair Lawn, NJ).

2.2. Cell culture and membrane preparation

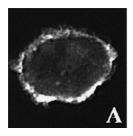
Human embryonic kidney (HEK-293) cells stably transfected with cDNA encoding either recombinant rat μ -opioid receptors (HEK- μ) or the rat μ -opioid receptor tagged at the N-terminal with the epitope tag sequence EYMPME (HEK- μ EE) (Arden et al., 1995) (both expressing approximately 4 pmol [3 H]diprenorphine sites/mg protein), were grown in T-175 cm 3 tissue culture flasks containing media (a 1:1 mix of Dulbecco's modified Eagle's medium and Ham's F-12 medium, supplemented with 10% foetal bovine serum and 200 μ g/ml G418). Crude membranes were prepared as described previously (Lazareno et al., 1993) and frozen at -70° C at a protein concentration of 5–7 mg/ml.

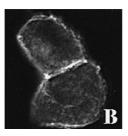
2.3. Confocal microscopy

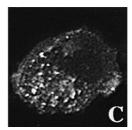
HEK-μEE cells were visualized by confocal microscopy as described previously (Tolbert and Lameh, 1996). Briefly, HEK-μEE cells were grown on chamber slides to ~50% confluency. Media was removed and replaced with media containing agonist (for 30 min). After agonist treatment, cells were fixed for 10 min with 3.7% paraformal-dehyde in phosphate-buffered saline (PBS) and permeabilized for 1 h in PBS containing 0.25% fish gelatin, 0.04% saponin and 0.05% NaN₃. Cells were labelled with anti-EE monoclonal antibody for 1 h, followed by a 30-min incubation with Cy3-labelled goat anti-mouse secondary antibody. Slides were visualized with a BioRad MRC 600 laser scanning confocal microscope with a yellow high sensitivity filter block.

2.4. $[^{35}S]$ Guanosine 5'- $[\gamma$ -thio]triphosphate ($[^{35}S]$ GTP γS) binding to G proteins

[35S]GTPyS binding to G proteins and subsequent immunoprecipitation was conducted as a modification of a method previously described (Freidman et al., 1993; Wang et al., 1995). Aliquots of frozen cell membranes were diluted in assay buffer (10 mM HEPES, 10 mM MgCl₂, 100 mM NaCl, pH 7.4) to yield a final protein concentration of approximately 35 μ g/50 μ l. Cell membranes (50 μ l) were then added to 1.5 ml microcentrifuge tubes containing 50 µl of assay buffer with various reagents and a final assay concentration of 1 nM [35S]GTPyS (1250 Ci/mmol). Incubations were conducted in a waterbath at 30°C for 1 min and terminated by addition of ice-cold assay buffer (500 μ l) and transfer of the microcentrifuge tubes to iced water. The cell membranes were pelleted $(16,000 g \text{ for } 5 \text{ min, at } 4^{\circ}\text{C})$ and the supernatants removed. Pellets were then solubilized in 50 μ l of ice-cold solubilization buffer (100 mM Tris, 200 mM NaCl, 1 mM EDTA, 1.25% (v/v) Nonidet P-40, pH 7.4) containing 0.2% (w/v) sodium dodecyl sulphate (SDS). The tubes were vortex-mixed and an equal volume of solubilization buffer was added (without SDS).


2.5. Immunoprecipitation of $[^{35}S]GTP\gamma S$ bound G proteins with antisera to specific $G\alpha$ proteins


The solubilized cell membranes were pre-cleared with normal rabbit serum (1:100 dilution) and 20 μ l of a protein G bead suspension (solubilization buffer (without SDS) containing 20% (v/v) protein G beads, 2% (w/v). Bovine serum albumin and 0.1% (w/v) NaN₃) for 1 h at 4°C. The protein G beads and unsolubilized fraction of the cell debris were pelleted (16000 \times g for 5 min at 4°C) and 100 μ l of the supernatant was carefully transferred to tubes containing 40 µl of protein G suspension and 1:200 final dilution of specific G protein antisera. Samples were vortex-mixed and rotated overnight at 4°C. Protein G beads were then pelleted (16000 \times g for 5 min at 4°C), the supernatant removed and the protein G beads washed and pelleted twice in 500 μ l of solubilization buffer at 4°C. After the final wash, the supernatant was removed and the protein G beads were resuspended in scintillation cocktail (1 ml) and vortex-mixed. Radioactivity was detected by liquid scintillation spectrometry. Non-specific binding was defined in the presence of 10 μ M GTP γ S (approximately 50 dpm/tube) and was subtracted from the dpm value for each tube.


3. Results

3.1. Confocal microscopy of agonist-treated HEK- μ EE cells

Confocal microscopy studies showed that a 30 min incubation with DAMGO (10 μ M) and endomorphin I (10

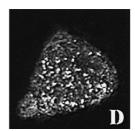


Fig. 1. Confocal microscopy images showed that μ EE receptors in HEK- μ EE cells were distributed at the cell surface in the absence of agonist (A) and in the presence of morphine (B). Treatment with DAMGO (C) or endomorphin I (D) caused a redistribution of μ EE receptors into intracellular vesicles. Data are representative of 3 separate experiments.

 μ M) caused a redistribution of epitope-tagged μ -opioid receptors from the cell surface (Fig. 1A) into intracellular vesicles (Fig. 1C and D), whereas morphine (10 μ M) did not cause internalization (Fig. 1B).

3.2. Agonist-stimulated G protein activation in HEK- μ cell membranes

Agonist-stimulated [35 S]GTP γ S binding and subsequent immunoprecipitation with specific G protein antisera was conducted as described. No agonist-stimulated G protein activation was detected following immunoprecipitation with Gq α /G11 α or Gs α antisera, either at 1 min (Fig. 2) or at later time periods, for any of the ligands studied (data not shown). In contrast, HEK-membranes expressing either m1 muscarinic receptors or melanocortin receptors produced large agonist-stimulated increases in [35 S]GTP γ S binding to Gq α /G11 α (12-fold above basal) and Gs α (22-fold above basal), respectively (P < 0.05 by Student's t-test), suggesting that the assay was sensitive enough to detect activation of these G proteins.

Morphine (1 μ M) maximally increased [35 S]GTP γ S binding to Gi $_1\alpha$ /Gi $_2\alpha$, Go α and Gi $_3\alpha$ by 3.9-fold, 2.5-fold and 3.7-fold above basal, respectively (P < 0.05

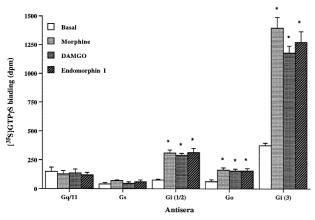


Fig. 2. Agonist-stimulated [35 S]GTPyS binding (in dpm) following immunoprecipitation with specific G protein antisera (x-axis) in HEK- μ membranes. Data are represented as the mean \pm S.E.M. of three experiments each performed in duplicate. * Significantly greater (P < 0.05) compared to basal [35 S]GTPyS binding.

by Student's *t*-test) (Fig. 2). DAMGO (1 μ M) and endomorphin I (1 μ M) produced activation of these G proteins with a similar efficacy to that of morphine (Fig. 2). No agonist (10 μ M)-stimulated G protein activation was observed in untransfected HEK cell membranes (data not shown), or in HEK- μ membranes from cells pretreated with pertussis toxin (100 ng/ml, 20 h) (data not shown).

4. Discussion

In this study we have demonstrated that endomorphin I (a putative endogenous agonist peptide for the μ -opioid receptor) causes internalization of μ -opioid receptors in HEK- μ EE cells. Previous studies have shown that DAMGO and etorphine similarly cause rapid internalization of the μ -opioid receptor, whereas the prototypical agonist morphine does not (Arden et al., 1995; Keith et al., 1996). These results suggested the possibility that these ligands may also differentially activate specific G proteins. However, analysis of the G protein coupling specificity of the μ -opioid receptor following activation with morphine, DAMGO and endomorphin I, showed that each of these agonists activated $\text{Gi}_1 \alpha/\text{Gi}_2 \alpha$, $\text{Go} \alpha$ and $\text{Gi}_3 \alpha$ with similar efficacy, but did not cause activation of $\text{Gq} \alpha/\text{Gl} 1 \alpha$ or $\text{Gs} \alpha$ in HEK- μ membranes.

Previous studies in our laboratory have shown that μ and μ EE receptors behave in a similar manner with regards to ligand binding affinity, total G protein activation measured by [35 S]GTP γ S binding and second messenger responses (Segredo et al., 1997). Therefore, introduction of the epitope-tag (EE) should not have affected the comparisons between HEK- μ membranes for G protein activation and HEK- μ EE cells for confocal studies.

The present study strongly suggests that $Gq\alpha/G11\alpha$ and $Gs\alpha$ are not involved in mediating μ -opioid receptor internalization, but we cannot rule out that other G proteins, not investigated in the present study, may play a role. The fact that morphine activated G proteins with the same profile as DAMGO and endomorphin I, but unlike the latter agonists, failed to mediate μ -opioid receptor internalization, suggests that activation of $Gi_1\alpha/Gi_2\alpha$, $Go\alpha$ and $Gi_3\alpha$ is insufficient to cause μ -opioid receptor internalization. This is supported by evidence that pertussis

toxin failed to inhibit DAMGO-stimulated μ -opioid receptor internalization in HEK- μ EE cells (Segredo et al., 1997). However, Chakrabarti et al. (1997) recently observed that DAMGO-mediated internalization of the μ -opioid receptor, in Neuro_{2A} cells, was reversed by pertussis toxin pretreatment, suggesting that internalization pathways may differ among cell types.

In summary, it appears that μ -opioid receptor activation leads, on the one hand, to G protein activation, and on the other, to receptor internalization by a mechanism distinct from G protein activation. Thus, different agonists may induce differences in activated receptor conformation, leading to similar G protein activation but distinct patterns of receptor trafficking.

Acknowledgements

The present study was supported by the National Institute for Drug Abuse, grant DA04166.

References

- Arden, J.R., Segredo, V., Wang, Z., Lameh, J., Sadee, W., 1995. Phosphorylation and agonist-specific intracellular trafficking of an epitope-tagged μ-opioid receptor expressed in HEK 293 cells. J. Neurochem. 65, 1636–1645.
- Birnbaumer, L., Abramowitz, J., Brown, A.M., 1990. Receptor–effector coupling by G proteins. Biochim. Biophys. Acta 1031, 163–224.
- Chakrabarti, S., Yang, W., Law, P.-Y., Loh, H.H., 1997. The μ opioid receptor down-regulates differently from the δ-opioid receptor: Requirement of a high affinity receptor/G protein complex formation. Mol. Pharmacol. 52, 105–113.
- Cheung, A.H., Sigal, I.S., Dixon, R.A., Strader, C.D., 1989. Agonist-promoted sequestration of the β_2 -adrenergic receptor requires regions involved in functional coupling with Gs. Mol. Pharmacol. 35, 132–138
- Clapham, D.E., Neer, E.J., 1997. G protein $\beta\gamma$ subunits. Annu. Rev. Pharmacol. Toxicol. 37, 167–203.

- Ferguson, S.S., Downey, W.E. III, Colapietro, A.M., Barak, L.S., Menard, L., Caron, M.G., 1996. Role of β-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363–366.
- Freidman, E., Butkerait, P., Wang, H.-Y., 1993. Analysis of receptorstimulated and basal guanine nucleotide binding to membrane G proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal. Biochem. 241, 171–178.
- Gerhardt, M.A., Neubig, R.R., 1991. Multiple Gi protein subtypes regulate a single effector mechanism. Mol. Pharmacol. 40, 707-711.
- Goodman Jr., O.B., Krupnick, J.G., Santini, F., Gurevich, V.V., Penn, R.B., Gagnon, A.W., Keen, J.H., Benovic, J.L., 1996. β -arrestin acts as a clathrin adaptor in endocytosis of the β_2 -adrenergic receptor. Nature 383, 447–450.
- Keith, D.E., Murray, S.E., Zaki, P.A., Chu, P.C., Lissin, D.V., Kang, L., Evans, C.J., von Zastrow, M., 1996. Morphine activates opioid receptors without causing their rapid internalization. J. Biol. Chem. 271, 19021–19024.
- Lazareno, S., Farries, T., Birdsall, N.J.M., 1993. Pharmacological characterisation of guanine nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors m1-m4. Life Sci. 52, 449-456.
- Lohse, M.J., Benovic, J.L., Caron, M.G., Lefkowitz, R.J., 1990. Multiple pathways of rapid β_2 -adrenergic receptor desensitization. Delineation with specific inhibitors. J. Biol. Chem. 265, 3202–3211.
- Petrou, C., Chen, L., Tashjian Jr., A.H., 1997. A receptor-G protein coupling-independent step in the internalization of the thyrotropin-releasing hormone receptor. J. Biol. Chem. 272, 2326–2333.
- Segredo, V., Burford, N.T., Lameh, J., Sadee, W., 1997. A constitutively internalizing and recycling mutant of the μ -opioid receptor. J. Neurochem. 68, 2395–2404.
- Tolbert, L.M., Lameh, J., 1996. Human muscarinic cholinergic receptor Hm1 internalizes via clathrin-coated vesicles. J. Biol. Chem. 271, 17335–17342.
- Wang, H.-Y., Undie, A.S., Friedman, E., 1995. Evidence for the coupling of Gq protein to D₁-like dopamine sites in rat striatum: Possible role in dopamine-mediated inositol phosphate formation. Mol. Pharmacol. 48, 988–994.
- Yatini, A., Mattera, R., Codina, J., Graf, R., Okabe, K., Padrell, E., Iyengar, R., Brown, A.M., Birnbaumer, L., 1988. The G protein-gated atrial K⁺ channel is stimulated by three distinct Gi α-subunits. Nature 336, 680–682.
- Zadina, J.E., Hackler, L., Ge, L.-J., Kastin, A.J., 1997. A potent and selective endogenous agonist for the μ -opiate receptor. Nature 386, 499–502.